Futuristic “biocomputers” using the power of human brain cells could soon become a reality — revolutionizing digital technology, a new study explains. Researchers from Johns Hopkins University say the half-human-half-machine devices have the potential to push past current technological limits by using brain organoids taken from tiny human skin samples.
The team of scientists has been experimenting with brain tissue the size of a pen dot, containing neurons and other functions with the ability to learn and memorize. Professor Thomas Hartung, who leads the work, says this “biological hardware” could soon assist with valuable research on how the human brain works and provide a way of alleviating energy consumption demands in supercomputers.
The study team also hopes organoid intelligence could additionally revolutionize drug testing research for neurodevelopmental disorders and neurodegeneration. Though computers can do calculations with numbers and data far quicker than humans, the brain is much better at making complex logical decisions, such as identifying one animal from another.
“The brain is still unmatched by modern computers,” Hartung says in a media release. “Frontier, the latest supercomputer in Kentucky, is a $600 million, 6,800-square-feet installation. Only in June of last year, it exceeded for the first time the computational capacity of a single human brain — but using a million times more energy.”
Every organ carries 50,000 cells
Prof. Hartung’s study, published in the journal Frontiers in Science, outlines his team’s plan for organoid intelligence.
“Computing and artificial intelligence have been driving the technology revolution but they are reaching a ceiling,” says Hartung, a professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering. “Biocomputing is an enormous effort of compacting computational power and increasing its efficiency to push past our current technological limits.”
For nearly two decades, scientists have been using tiny organoids — lab-grown tissue resembling fully-grown organs — to experiment on human organs without having to resort to human or animal testing. In 2012, Prof. Hartung and his colleagues began to grow and assemble brain cells into functional organoids using cells from human skin samples. The team then reprogrammed these cells into embryonic, stem cell-like states. Each organoid contains around 50,000 cells, which are as small as a fruit fly’s nervous system.
Read More: Futuristic “biocomputers” Using Human Brain Cells Could Soon Be A Reality