
EDITOR’S NOTE: As The Defender reported this morning, U.S. health officials paused vaccinations with the Johnson & Johnson vaccine following multiple reports of people who developed blood clots after receiving the vaccine. Health officials said the pause is immediate but temporary. The article below was written before J&J vaccinations were paused.
Everyone is talking about DNA/RNA vaccines. Can they alter our own genetic codes?
The vaccine lobby says “Never!” I, however — laboring beneath the weight of a Ph.D. in virology — would instead quote Gilbert and Sullivan: “Well, hardly ever.”
Most people don’t know very much about DNA or RNA, so I’ll start with a 30-second chemistry discussion. DNA and RNA are both polymers, long strings (in this case, very long strings) composed of seemingly endless repetitions of a single basic chemical building block, called a nucleotide.
Don’t see much difference? That’s because there isn’t much. The red asterisk (*) shows the primary difference. RNA has an extra “O” (the abbreviation for an Oxygen atom). That’s about it.
Viruses have no lives of their own. They can grow only in host cells, such as, for example, your cells. In order for a virus to infect you, it needs to recognize a “receptor” on your cell surfaces. If — and only if — the virus can recognize such a receptor, then it has its own clever way of attaching itself to that receptor and sneaking its DNA (or RNA — viruses can have either one) into your cells.
Once inside, the DNA (or RNA) virus chromosome proceeds to reproduce itself, giving rise to hundreds or thousands of exact copies. These are then turned into complete virus particles by being covered with a protective protein coat. Next, the cell is broken open and the new progeny viruses disperse, infecting hundreds or thousands of other cells.
It’s easy to see how a viral infection can spread like wildfire in your body.
Even though the chemical differences between DNA and RNA are relatively small, the cell is smart enough to instantly recognize those small differences and act accordingly.
Read more: Why I Won’t Take the Johnson & Johnson Vaccine — a Scientist’s Perspective
